Refine Your Search

Topic

Search Results

Standard

Helical Compression and Extension Spring Terminology

2016-08-02
CURRENT
J1121_201608
The following recommended practice has been developed to assist engineers and designers in the preparation of specifications for the major types of helical compression and extension springs. It is restricted to a concise presentation of items which will promote an adequate understanding between spring manufacturer and spring user of the major practical requirements in the finished spring. Closer tolerances are obtainable where greater accuracy is required and the increased cost is justified. For the basic concepts underlying the spring design and for many of the details, see the SAE Information Report MANUAL ON DESIGN AND APPLICATION OF HELICAL AND SPIRAL SPRINGS, SAE HS 795, which is available from SAE Headquarters in Warrendale, PA 15096. A uniform method for specifying design information is shown in the TYPICAL DESIGN CHECK LISTS FOR HELICAL SPRINGS, SAE J1122.
Standard

SPHERICAL ROD ENDS

1975-07-01
HISTORICAL
J1120_197507
This SAE Standard covers the general and dimensional data for industrial quality spherical rod ends commonly used on control linkages in automotive, marine, construction, and industrial equipment applications. The rod ends described are available from several manufacturers within the range of the interchangeable specifications. The sliding contact spherical self-aligning bearing members (ball and socket) are available in a variety of materials in types shown. The load capacities and wear capabilities vary considerably with the design and fabrication. It is suggested that the manufacturers be consulted for recommendations for the type and design appropriate to particular applications.
Standard

Helical Compression and Extension Spring Terminology

2006-09-12
HISTORICAL
J1121_200609
The following recommended practice has been developed to assist engineers and designers in the preparation of specifications for the major types of helical compression and extension springs. It is restricted to a concise presentation of items which will promote an adequate understanding between spring manufacturer and spring user of the major practical requirements in the finished spring. Closer tolerances are obtainable where greater accuracy is required and the increased cost is justified. For the basic concepts underlying the spring design and for many of the details, see the SAE Information Report MANUAL ON DESIGN AND APPLICATION OF HELICAL AND SPIRAL SPRINGS, SAE HS 795, which is available from SAE Headquarters in Warrendale, PA 15096. A uniform method for specifying design information is shown in the TYPICAL DESIGN CHECK LISTS FOR HELICAL SPRINGS, SAE J1122.
Standard

ELECTRIC HOURMETER SPECIFICATION

1983-03-01
HISTORICAL
J1378_198303
This SAE Recommended Practice establishes minimum requirements for electric hourmeters for general vehicular applications.
Standard

Metric Spherical Rod Ends

2012-10-15
CURRENT
J1259_201210
This SAE Standard covers the general and dimensional data for industrial quality spherical rod ends commonly used on control linkages in metric automotive, marine, construction, and industrial equipment applications. The rod ends described are available from several manufacturers within the range of the interchangeable specifications. The sliding contact spherical self-aligning bearing members (ball and socket) are available in a variety of materials in the types shown. The load capacities and wear capabilities vary considerably with the design and fabrication. It is suggested that the manufacturers be consulted for recommendations for the type and design appropriate to particular applications.
Standard

Rated Suspension Spring Capacity

2004-10-25
CURRENT
J274_200410
The Rating Suspension Spring Capacity definition has been developed to assist engineers and designers in the preparation of specifications and descriptive material and values relating thereto.
Standard

Metric Yoke Type Rod Ends

2012-10-15
CURRENT
J1651_201210
This SAE Standard provides dimensions, tolerances, material, and heat treatment for yoke type rod ends with metric threads and for use with metric size clevis pins.
Standard

METRIC YOKE TYPE ROD ENDS

1994-02-01
HISTORICAL
J1651_199402
This SAE Standard provides dimensions, tolerances, material, and heat treatment for yoke type rod ends with metric threads and for use with metric size clevis pins.
Standard

Metric Ball Joints

2012-10-15
CURRENT
J2213_201210
This SAE Standard covers the general and dimensional data for industrial quality ball joints commonly used on control linkages in metric automotive, marine, construction, and industrial equipment applications.
Standard

Strain-Life Fatigue Data File Format

2018-08-24
CURRENT
J2409_201808
SAE format for a SIMPLE Strain-Life Fatigue Data Exchange File Format. The object of this SAE Standard is to provide a simple common way to exchange strain-life fatigue data collected from ASTM E 606 axial fatigue test data.
Standard

Strain-Life Fatigue Data File Format

2018-08-24
CURRENT
J2649_201808
SAE data file format for exchanging controlled periodic overload data. The object of this SAE Standard is to provide a simple, common methodology for exchanging the data from periodic overload fatigue tests. These tests consist of a single large fatigue cycle followed by a larger number of smaller cycles. The overloads are fully reversed fatigue cycles while the smaller cycles share a common mean and amplitude.
Standard

Stainless Steel 17-7 PH Spring Wire and Springs

2016-04-05
CURRENT
J217_201604
This SAE Recommended Practice covers a high-quality corrosion-resisting steel wire, cold drawn, formed, and heat treated to produce uniform mechanical properties. It is magnetic in all conditions. It is intended for the manufacture of springs and wire forms that are to be heat treated after forming to enhance the spring properties. This document also covers processing requirements of the springs and forms fabricated from this wire.
Standard

STAINLESS STEEL 17-7 PH SPRING WIRE AND SPRINGS

1994-07-01
HISTORICAL
J217_199407
This SAE Recommended Practice covers a high-quality corrosion-resisting steel wire, cold drawn, formed, and heat treated to produce uniform mechanical properties. It is magnetic in all conditions. It is intended for the manufacture of springs and wire forms that are to be heat treated after forming to enhance the spring properties. This document also covers processing requirements of the springs and forms fabricated from this wire.
Standard

STAINLESS STEEL, SAE 30302, SPRING WIRE AND SPRINGS

1994-06-01
HISTORICAL
J230_199406
This SAE Recommended Practice covers a high-strength corrosion-resisting steel wire, uniform in mechanical properties, intended for the manufacture of springs and wire forms. It also covers processing requirements of springs and forms fabricated from this wire.
Standard

Stainless Steel, SAE 30302, Spring Wire and Springs

2016-04-05
CURRENT
J230_201604
This SAE Recommended Practice covers a high-strength corrosion-resisting steel wire, uniform in mechanical properties, intended for the manufacture of springs and wire forms. It also covers processing requirements of springs and forms fabricated from this wire.
Standard

Decorative Anodizing Specification for Automotive Applications

2013-03-28
CURRENT
J1974_201303
This SAE Recommended Practice is aimed at ensuring high-quality products of anodized aluminum automotive components in terms of durability and appearance. Decorative sulfuric acid anodizing has been well developed over the last several decades in the aluminum industry. Exterior and interior performance demonstrated that parts processed to this document meet long-term durability requirements. Since the treatment of processing variables is outside the scope of this document, it is important for applicators of this coating to develop an intimate knowledge of their process, and control all parameters that affect the quality of the end product. The use of techniques such as statistical process control (SPC), capability studies, design of experiments, process optimization, etc., are critical to produce material of consistently high quality.
Standard

ELASTOMERIC BUSHING "TRAC" APPLICATION CODE

1994-10-01
HISTORICAL
J1883_199410
The bushing "TRAC" code is intended to be a tool that will aid in the definition of the geometric environment for the test, or use, of an elastomeric bushing.
Standard

Elastomeric Bushing "TRAC" Application Code

2017-02-09
CURRENT
J1883_201702
The bushing "TRAC" code is intended to be a tool that will aid in the definition of the geometric environment for the test, or use, of an elastomeric bushing.
Standard

Helical Springs: Specification Check Lists

2004-10-11
HISTORICAL
J1122_200410
The following SAE Recommended Practice furnishes sample forms for helical compression, extension and torsion springs to provide a uniform method for specifying design information. It is not necessary to fill in all the data, but sufficient information must be supplied to fully describe the part and to satisfy the requirements of its application. For detailed information, see “Design and Application of Helical and Spiral Springs - SAE HS 795”, also “Helical Compression and Extension Spring Terminology - SAE J1121”. Both of these documents use SI (metric) Units in accordance with the provisions of SAE TSB 003, as does SAE J1122. Here, however, the U.S. Customary Units (in, lb, psi) have been added in parentheses after each SI Unit for the convenience of the user who must furnish specifications on a project where all requirements are listed in non-metric terms.
Standard

Helical Springs: Specification Check Lists

2016-08-02
CURRENT
J1122_201608
The following SAE Recommended Practice furnishes sample forms for helical compression, extension and torsion springs to provide a uniform method for specifying design information. It is not necessary to fill in all the data, but sufficient information must be supplied to fully describe the part and to satisfy the requirements of its application. For detailed information, see “Design and Application of Helical and Spiral Springs - SAE HS 795”, also “Helical Compression and Extension Spring Terminology - SAE J1121”. Both of these documents use SI (metric) Units in accordance with the provisions of SAE TSB 003, as does SAE J1122. Here, however, the U.S. Customary Units (in, lb, psi) have been added in parentheses after each SI Unit for the convenience of the user who must furnish specifications on a project where all requirements are listed in non-metric terms.
X